N

s
s g
s
g

I
A
A
\

,/,,/,,
A
A
0
A\
”””,, ,,,,”,”,,,,,,,,,/
AN
\\

\

W\

\
N
N
””,,,,

Disney laid down the

fundamental principles of
cartoon animation. It's time we

!

]

In 198

did the same for videogames

By JoNATHAN COOPER

86




NN

ANAN

ANANAN
ANAN

NN

NEN
SN

“
AN

NN
S
ANAN

NN
SRS
SNNS

S

S
SSS
S




88

R

ML
AN
AN
\

7

\

\

he 12 basic principles of animation,
introduced by Disney’s Ollie Johnston and
Frank Thomas in the 1981 book The Illusion
Of Life: Disney Animation, are a great
foundation for any animator. Ultimately, however,
they were written with the concept of linear
entertainment like TV and film in mind, and the
move to 3D kept all of these elements intact due to
the purely aesthetic change in the medium. Since 3D
animated cartoons and visual effects are still part of a
linear medium, they will translate only to certain

The single biggest element that separates videogame
animation from traditional linear animation is
interactivity. The very act of the player controlling
and modifying their avatars, making second-to-
second choices, ensures that the animator must
relinquish complete authorship of the experience. As
such, any uninterrupted animation that plays from
start to finish is a period of time in which the player
is essentially locked out of the decision-making
process while they wait for the animation to finish (or
reach the desired result, such as landing a punch). The
time taken between a player’s input and the desired
reaction can make the difference between creating the
illusion that player is embodying their avatar, or is
just a passive viewer on the sidelines. That is why
cutscenes have for years been the only element in
videogames to consistently feature a ‘skip’ option —
because they most reflect traditional non-interactive
media, which is antithetical to the medium.

Response

Game animation must always consider the response
time — that is, the window between the player’s input
and the game’s response to it — as an intrinsic part
of how the character or interaction will ‘feel’ to the
player. While generally the desire is to have the
response be as quick as possible, that is dependent
on the context of the action. For example, heavier or
stronger actions are expected to be slower, while
enemy attacks must be slow enough to be seen by
the player in time for them to respond.

It is the game animator’s remit, often working in
concert with a designer and/or programmer, to offer
the correct level of response to provide the best ‘feel,
while also retaining a level of visual fidelity that
satisfies all the intentions of the action and the
character. It is important to not sacrifice the weight
of the character or the force of an action for the desire

N\
\\\ N\
AN

1: Feel

N\

elements of videogame animation — often only if the
game is cartoonish in style.

As such, it is time to propose an additional set
of principles unique to game animation that don’t
replace, but instead complement, the originals.
These are the five core tenets of our new nonlinear
entertainment medium, that when taken into
consideration form the basis of videogame characters
that not only look good, but feel good under player
control — something the original 12 principles didn’t
have to consider.

to make everything as responsive as possible, so
a careful balancing act and as many tricks as are
available must be employed.

Ultimately, though, the best mantra is that ‘the
player wins’ The most fluid and beautiful animation
will always be cut or scaled back if it interferes too
much with gameplay, so it is important for the game
animator to have a player’s eye when creating
response-critical movements — and, most
importantly, to actually play the game.

Inertia and momentum

Inertia is a great way to not only provide a sense of
feel to player characters, but also to make things fun.
While some characters will be required to turn on a
dime and immediately start running at full speed,
driving a car around a track that could do the same
would not only feel unrealistic but would also mean
there is no joy to be had in approaching a corner at
the correct speed and shaving a second off your best
lap. The little moments when you are nudging an
avatar because you understand their controls are
where mastery of a game is to be found, and much
of this is provided via inertia.

Judging death-defying jumps in a platform game is
most fun when the character must be controlled in an
analogue manner, where they take some time to reach
full speed and continue slightly after the input is
released. This is also a design and programming
challenge, but the animator often controls the initial
inertia boost and slowdown in stop/start animations.

Momentum, meanwhile, is often conveyed by how
long it takes a character to change its current
direction or heading. The general principle is that the
faster a character is moving, the longer it takes to
change direction — via larger turning circles at higher
speeds, or longer plant-and-turn animations if the
player wants to turn 180 degrees. Larger turning




circles can be made to feel better by immediately
showing the intent of the avatar, such as having the
character lean into the turn or move their head
towards it. But ultimately we are balancing within a
very small window of time, lest we render our
characters unresponsive.

Visual feedback

A key component of the ‘feel’ of any action the player
and their avatar perform is the visual representation
of that action. A simple punch can be made to feel
stronger with a variety of techniques related to
animation, beginning with the follow-through. A
long, lingering held pose will do wonders for telling
the player they just did something powerful. The
animation on the attacked enemy is a key factor in
informing the player just how much damage has been
suffered, with exaggeration being a key component.

In addition, employing tricks such as camera-
shake will help further sell the impact of landing the
punch or gunshot, not to mention visual effects such
as blood or flashes to further register the impact in
the player’s mind. Many fighting games employ a
technique named ‘hit-stop’ that freezes the game for a
single frame whenever a hit is registered. This further
breaks the flow of clean arcs in the animations, and
reinforces the frame on which the impact took place.

As many moves are performed quickly in order to
be responsive, they might get lost on the player,

Rather than being created using long, flowing
animations, games are instead made of lots of shorter
animations playing in sequence. As such they are
often stopping, starting, overlapping and moving
between each other. It is a videogame animator’s job
to be involved in how these animations flow together
so as to maintain the same fluidity that they put into
the animations themselves. A variety of techniques is
used to achieve this, with the ultimate goal being to
reduce any unsightly movement that can take a player
out of the experience by highlighting where one
animation starts and another ends.

2: Fluidity

especially during hectic fight scenes. Attacking
actions can be reinforced by additional effects that
draw the arc of the punch, kick or sword-swipe on
top of the character in a similar fashion to the smears
and multiples used in classic animation. When a
sword-swipe takes only two frames to complete its
arc, the player benefits mostly from the arcing effect
it leaves behind.

Slower actions can be made to feel responsive
simply by showing the player that at least part of
their character is responding to their commands.

For example, an avatar riding a horse can be seen to
immediately turn the horse’s head with the reins, even
if the horse itself takes some time to respond to this
and traces a wide circle as it turns. This visual
feedback will feel entirely more responsive than the
slowly turning horse alone would following the exact
same wide turn.

A classic example of this is the difference between
the early Mario and Sonic The Hedgehog games. Both
rely heavily on inertia and momentum as core tenets
of their gameplay, but whereas Mario will comically
run on the spot as he ramps up to full speed or
changes direction, Sonic simply runs slowly until he is
fast enough to spin, and skids to a stop as he changes
direction. Ultimately Mario feels better under player
control because, while both characters perhaps handle
similarly, at least Mario looks like he is trying hard to
instantly match the player’s desires.

Blending and transitions

In classic 2D games, a sprite’s animation either played
or it didn’t. This binary approach carried on into 3D
animation until developers realised that, due to
characters essentially being animated by poses
recorded as values, they could manipulate those values
in a variety of ways. The first such improvement that
arrived was the ability to blend across (essentially
cross-fading animations during a transitory stage)
every frame, taking an increasing percentage of a new
animation’s value and a decreasing percentage of the
former as one ended and another began. While more »

THE MOST FLUID AND BEAUTIFUL
ANIMATION WILL BE CUT OR SCALED
BACK IF IT INTERFERES WITH

R

Jonathan Cooper
is an animator at
Naughty Dog.
This is an edited
extract from his
new book, Game
Anim: Videogame
Animation
Explained, on
sale February 3




calculation-intensive, this opened up opportunities for
increasing the fluidity between individual animations
and removing unsightly pops between them.

For a basic example of this, take an idle animation
and a run. Having the idle immediately cancel and the
run immediately play on player input will cause the
character to break into a run at full speed, but the
character will pop as they start and stop due to the
repeated nature of the player’s input. This action can
be made more visually appealing by blending between
the idle and run over several frames, causing the
character to more gradually move between the
different poses. Animators should have some degree
of control over the length of blends between any two
animations to make them as visually appealing as
possible, though always with an eye on the gameplay
response of the action.

The same situation above can be improved further
— albeit with more work — by creating brief, bespoke
animations between idle and run (starting) and back
again (stopping), with blends between all of them.
What if the player started running in the opposite
direction to which they were facing? An animator
could create a transition for each direction that turns
the character as they begin running in order to
completely control the character’s weight-shift as they
lean into the desired direction and push off with their
feet. What if they aren’t running, but only walking?
Again, the animator could create multiple directional
transitions for that speed also. As you can see, the
number of animations can quickly spiral in number, so
a balance must be made between budget and team-
size, and the desired level of fluidity.

Seamless cycles
Even within a single animation it is essential to
maintain fluidity of motion, and that includes when
a cycling animation ends and restarts. A large
percentage of game animations cycle back on
themselves so it is important, once again, to ensure
the player cannot detect when this transition occurs.
As such, care must be taken to maintain momentum
through actions so the end of the animation perfectly
matches the start.

It is not simply enough to ensure the last frame of
a cycle identically matches the first: care must also be

taken to preserve momentum on each body part to
make the join invisible. This can be achieved by
modifying the curves before and after the last frame
to ensure they create clean arcs and continue in the
same direction. For motion-capture, where curves are
mostly unworkable, there are techniques that can
automatically provide a preservation of momentum
as a cycle restarts.

Care should also be taken to maintain this
momentum when creating an animation that
transitions into a cycle, such as how the stopping
animation should seamlessly match into the idle. For
maximum fluidity, the best approach in this case is to
copy the approved idle animation, and the stopping
transition, into the same scene, to manually match the
curves leading into the idle, exporting only the
stopping transition from that scene.

Settling

This kind of approach should generally be employed
whenever a pose must be hit at the end of an
animation. It is rather unsightly to have a large
movement, such as an attack animation, end abruptly
in the combat idle pose, especially with all of the
character’s body parts arriving simultaneously.
Offsetting individual elements such as the arms and
root are key to a more visually pleasing ‘settle’

Notably, however, games often suffer from too
quickly resuming the idle pose at the end of an
animation in order to return control to the player, but
this can be avoided by animating a long tail on the end
of an animation and allowing the player to exit out of
it before the end if they provide a new input. This
ability to interrupt an animation before finishing
allows the animator to use the desired number of
frames required for a smooth and fluid settle.

Settling is generally achieved by first copying the
desired end pose to the end of an animation but
ensuring elements such as limbs, even divided into
shoulder and forearms, arrive at their final positions at
different times, with earlier elements hitting then
overshooting their goal, creating overlapping
animation. Settling the character’s root — perhaps the
single most important element as it moves everything
not planted — is best achieved by having it arrive at
the final pose with different axes at different times.

IT IS ESSENTIAL TO MAINTAIN
FLUIDITY OF MOTION, INCLUDING WHEN AN
ANIMATION ENDS AND RESTARTS




N \\\\\\\\\\\\
Perhaps it achieves its desired height first as it is still lessens the harshness of a character fully assuming the
moving left-to-right, causing the root to hit then end-pose on a single frame — though care must be
bounce past the final height and back again. Offsetting taken to not overdo overlap, which may result in limbs
the head and limbs in the order of character root appearing weak and floppy.
.
3: Readability

After interactivity, the biggest differentiator between look — and not just to avoid issues such as hard

game and traditional animation, in 3D games at least, armour-like clothing at key versatile joints such as

is that the former will more often than not be viewed shoulders or waists. They should also help guide the

from all angles. This bears similarity to the traditional design so as to provide the best silhouettes when

principle ‘staging, but a game animator cannot cheat posed. A character with an appealing silhouette makes

or animate to the camera, nor can they control the the job of animating far easier when attempting to

composition of a scene. So, actions must be created to create appeal than one composed entirely of

be appealing from all angles; it is not enough to simply unimaginative blobs or shapeless tubes for limbs.

get it right from a front or side-view. Game animators It is advisable to request ‘proxy’ versions of

must take care to always be rotating and approving characters at early stages of development so they can

their motion from all angles, much like a marble be roughly animated and viewed in the context of the

sculptor walking around their work. gameplay camera — which, due to wide fields of view,
. often warp the extremities of character as they reach

Posmg fOl‘ game cameras the screen’s edge. Generally, the most appealing

To aid the appeal and readability of any given action, it characters look chunkier and thicker than they might

is best to avoid keeping a movement all in one axis. For in real life, due to them being warped and stretched

example, a combo of three punches should not only once viewed through the game camera.

move the whole character forward as they attack, but

also slightly to the left and right. Similarly, the pose the Collision and centre Of mass

character ends in after every punch should avoid body- As with all animation, consideration must be given to
parts aligning with any axis, such as arms and legs that the centre of mass (COM) of a character at any given
appear to bend only when viewed from the side. Each frame, especially as multiple animations transition
pose should be dynamic, with lines of action drawn between one another so as to avoid unnatural
through the character that are not in line with any axis. movements when blending. The COM is generally
For the motions themselves, swiping actions always found over the leg that is currently taking the full
read better than stabbing motions as they cover an arc weight of the character’s root when in motion, or
that will be seen by the player regardless of camera between both feet if they are planted on the ground
angle. Even without the aid of a trail effect, a swipe when static. Understanding this basic concept of
passes through multiple axes, and therefore camera balance will not only greatly aid posing, but will also
angles — so even if the player is viewing from a less- avoid motions looking wrong to the player without
than-ideal perspective, they should still have an idea of them knowing exactly the issue.
what happened, especially if the character dramatically This is especially true when considering the
changes their line of action during poses. character’s collision, or location, in the game world.
All this said, play to the game being made. If the This is the single point where a character will pivot
camera is fixed to the side, as in a 1v1 fighting game, when rotated, and, more importantly, where the
then actions should be created to be most readable character you’re designing will be considered to
from that angle. Similarly, if you are creating a run exist in the game at any given time. You will always
animation for a game mostly viewed from the rear, then animate the character’s position in the world when
ensure the cycle looks best from that angle before animating away from the 3D scene origin, though not
polishing for others. so if cycles are exported in place. Importantly,
animations are always considered to be exported
Silhouettes relative to this prescribed location, so characters
At the design and concept stage, the animator should should end in poses that match others (such as idles),
get involved in helping guide how a character might relative to this position. »

EDGE 91




\

In linear animation, the context of any given action is
defined by the scene in which it plays and what has
happened in the story up to that point. The same is
impossible in game animation. Often the animator has
no idea which action the player performed beforehand,
nor the setting in which they are performing the
action. More often than not the animation is to be
used repeatedly throughout the game in a variety of
settings, and even on a variety of different characters.

Distinction vs homogeneity

Due to the unknown setting of most game animations,
the animator must look for opportunities to give
character to the player and non-player characters
whenever possible, and must also consider when they
should avoid it.

If, for example, the animator knows that a
particular run cycle is only to be used by a particular
character, then they can imbue it with personality that
matches the character description. If they can create a
variety of run cycles for that character in different
situations, so much the better. Are they strong and
confident initially, but later suffer loss or failure and
become despondent? Are they chasing after someone,
or running away from a rolling boulder about to crush
them? The level of distinction the animator should
put into the animation depends on how much control
they have over the context in which it will be seen.

However, if an animation is not designed for the
player character but instead for multiple NPCs, then
the level of distinction and notability should generally
be dialled down so as to not stand out. Walks and
runs must instead be created to look much more
generic, unless the animation is shared by a group of
NPCs — all the soldiers in a game might run
differently from all the civilians, for example. Almost
always, the player character is the most unique of all
a game world’s inhabitants, so this should be reflected
in their animations.

Game animations rarely play on their own. They
require underlying systems within which they are
triggered, allowing them to flow in and out of one
another at the player’s input — often blending
seamlessly, overlapping one another and combining
multiple actions at once to ensure the player is

4: Context

5: Elegance

Repetition

Similarly, within a cycling animation, if the action is
expected to be repeated endlessly, such as an idle or
run cycle, then care must be taken to avoid any
individual step or arm-swing standing out against
the rest lest it render the rhythm of repetition too
apparent to the player — ie every fourth step has a
noticeably larger bounce.

Stand-out personality can instead be added to
on-off actions or within cycles via ‘cycle-breakers’
such as the character shifting their footing after
standing still too long, performing a slight stumble
to break up a tired run, or even by modifying the
underlying animation with additive actions.

Placement

A key factor in setting the exaggeration of
movement is the relative size on screen of the
character as defined by the camera distance and field
of view. While cameras have drawn closer and closer
as the fidelity of characters has increased, players
still need to see a lot of the environment on screen
for awareness purposes, so many games may show
characters that are quite small. Distant cameras
require actions to be much larger than life so they
can be read by the player.

The same is true of enemy actions that are far
off in the distance, such as damage animations to
tell the player they landed a shot. Conversely, only
really close cameras such as those employed in
cutscenes afford subtleties like facial expressions —
here, overly theatrical gestures will generally look
out of place. It is important as a game animator to
be aware of the camera for any particular action you
are animating. The wide field of view of the
gameplay camera will even distort the character
enough to affect the look of your animation, so as
ever, the best way to evaluate the final look of your
animation is in the game.

unaware of the individual animations affording their
avatar motion.

If not designing them outright, it is the game
animator’s duty to work with others to bring these
systems and characters to life, and the efficiency of
any system can have a dramatic impact on the




£

production and the team’s ability to make changes
towards the end of a project. Just as a well-animated
character displays efficiency of movement, a good,
clean and efficient system to play them can work
wonders for the end result.

Simplicity of design

The industrial designer Dieter Rams once stated that
good design “involves as little design as possible”,
concentrating only on the essential aspects. A good
game animation system should similarly involve no
more design than is actually required, since bloated
systems can quickly become unworkable as the
project scales to the often-required hundreds or
thousands of animations.

Every unique aspect of character-based gameplay
will require a system to play back animations, from the
navigation around the world to combat to jumping and
climbing to conversation and dialogue and many more.
Here the game animator must aid in creating systems
to play back all the varied animation required to bring
each element of character control to life, and often the
desire to create many animations will come into
conflict with the realities of production, such as
project length and budget.

Thankfully there are many tricks that a team can
employ to maximise their animation potential, such
as re-using and sharing, layering and combining
animations to create multiple combinations, or
ingenious blending solutions to increase fluidity
without having to account for every possible transition
outcome. While the absolutely simplest solution is to
do nothing more than play animations in sequence,
this will rarely produce the best and most fluid visuals.
The smartest approach is to manipulate animations at
runtime in the game engine to get the most out of the
animations the team has the time to create.

Bang for buck

Just as we look to share animations, being smart about
choices at the design stage should create a workable
method of combining animations throughout
production. This should in turn prevent unique
solutions being required for every new system. For
example, a well-thought-out system for opening doors
in a game could be expanded to interacting with and

\

opening crates if made efficiently. When building any
one system, anticipating uses beyond the current
requirements should always be considered.

A good approach to system design will produce
the maximum quality of motion for the minimum
amount of work. It must be stressed that every new
animation required not only involves its initial
creation, but later modification over multiple
iterations as well as debugging towards the end of the
project. Every stage of videogame development is
multiplied by every asset created, so avoiding adding
20 new animations for each object type is not only
cost-effective but also allows more objects to be added
to the game. All that said, sometimes the solution to a
system is to just brute-force create lots of animations
if your budget can allow.

Sharing and standardisation

As mentioned earlier, it is important to know when to
keep animations generic and when to make unique
ones. If the game requires the player character to
interact with many objects in a game, then it would be
wise to standardise the objects’ sizes so you can use
one animation to accommodate all objects of a
particular size.

The same goes for world dimensions, where if a
character can mantle over objects throughout the game
then it makes sense to standardise the height of
vaultable objects in the environment so the same
animation will work anywhere — not least so the
player can better read the level layout and know where
they can and cannot vault.

That said, if your gameplay is primarily about
picking up objects or vaulting over things, then it may
be worth creating more unique animations to really
highlight that area and spend less effort on animations
elsewhere. This again feeds back into the idea of
getting the most bang for your buck, and knowing
what is important to your particular game.

All these decisions must come into play when
designing systems for your game as very few teams
can afford unique and bespoke animations for each and
every situation. Nevertheless, beautiful game
animation can come from even single-person teams
that focus on one thing and do it very, very well. This
is the crux of good design. B

A GOOD APPROACH WILL PRODUCE THE
MAXIMUM QUALITY OF MOTION FOR
THE MINIMUM AMOUNT OF WORK

W

.

93




